Getting Started II: Sample Stats & Optimization

- Sample Statistics: data characteristics; measures of ...
 - Central tendency: Sample mean (\bar{x})
 - Variability/dispersion: Sample variance (S_{xx}); Sample standard deviation (S_x)
 - Association/relationship: Sample covariance (S_{xy}) ; Sample correlation $(r_{xy} \text{ or } \rho_{xy})$
- Standardization: $z_i = (x_i \bar{x})/S_x$ ($\bar{z} = 0$; $S_{zz} = S_z = 1$)
- Example: Anscombe's Quartet
- Optimization: OLS = min SSRs
 - FOCs: First Order Conditions identify solution candidates
 - SOCs: Second Order Conditions evaluate candidates (identify min's and max's)
- Example: min SSRs (Sum Squared Residuals)

Sample Statistics: Sample Mean

- You have a dataset consisting of n observations of two variables (x, y): $\{(x_i, y_i)\}$ i = 1, 2, ... n.
- The *sample mean* (average):

$$\overline{x} = \frac{1}{n} \sum x_i \text{ and } \overline{y} = \frac{1}{n} \sum y_i. \text{ Note that } \sum x_i = n\overline{x}.$$

- Deviations from means:
 - $dx_i = (x_i \overline{x})$ and $dy_i = (y_i \overline{y})$

- By construction, the total/sum of the deviations from the means for any variable will be zero

... Sample Variance, Standard Deviation & Covariance

• The *sample variance*:

$$S_{xx} = S_x^2 = \frac{1}{n-1} \sum_{i=1}^n (dx_i)^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \overline{x})^2$$
 and likewise for the y's.

• Since
$$\sum x_i = n\overline{x}$$
, $S_{xx} = \frac{1}{n-1} \sum x_i^2 - \frac{n}{n-1} \overline{x}^2 = \frac{1}{n-1} \left(\sum x_i^2 - n\overline{x}^2 \right)$.

• The sample standard deviation:

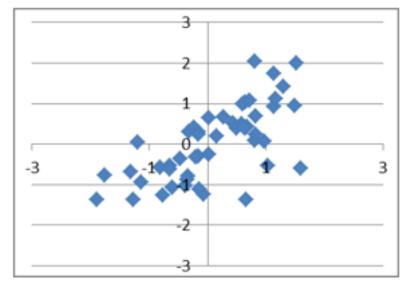
$$S_x = \sqrt{S_{xx}} = \sqrt{S_x^2} = \sqrt{\frac{1}{n-1}} \sum (dx_i)^2 = \sqrt{\frac{1}{n-1}} \sum (x_i - \overline{x})^2$$
, and likewise for the y's.

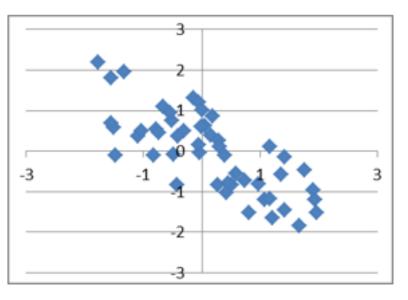
• The *sample covariance*:

$$cov(x,y) = S_{xy} = \frac{1}{n-1} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \sum x_i y_i - \frac{n}{n-1} \overline{xy}$$
(since $\sum x_i = n\overline{x}$ and $\sum y_i = n\overline{y}$.)

Sample Covariance: Some Intuition

- In the following examples, $\overline{x} = 0$ and $\overline{y} = 0$
- On the left, most of the data are in quadrants I and III, where $(x_i \overline{x})(y_i \overline{y}) > 0$; when you sum those positive products (and divide by n-1) you get a positive sample covariance.
- Most of the action on the right is in quadrants II and IV where $(x_i \overline{x})(y_i \overline{y}) < 0$; those products sum to a negative number, and we have a negative covariance.





Positive Covariance

Negative Covariance

Sample Covariance: A Few Properties

• The sample variance of x is the sample covariance of x with itself

$$\operatorname{cov}(x,x) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})(x_i - \overline{x}) = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2 = S_{xx}$$

• The covariance of a sum is the sum of the variances plus twice the covariance:

$$\operatorname{var}(x+y) = S_{xx} + 2S_{xy} + S_{yy}$$

- If $S_{xy} = 0$, then $var(x + y) = S_{xx} + S_{yy} = var(x) + var(y)$
- The covariance of linear transformations of the x's and y's:

$$cov(a+bx,c+dy) = bdS_{xy} = bd cov(x,y)$$

The covariance of x with sums of variables: cov(x, y + z) = cov(x, y) + cov(x, z)

... the sum of the covariances of x with each other variable.

• We can drop either \overline{x} or \overline{y} (but not both!) from the equation for the sample covariance.

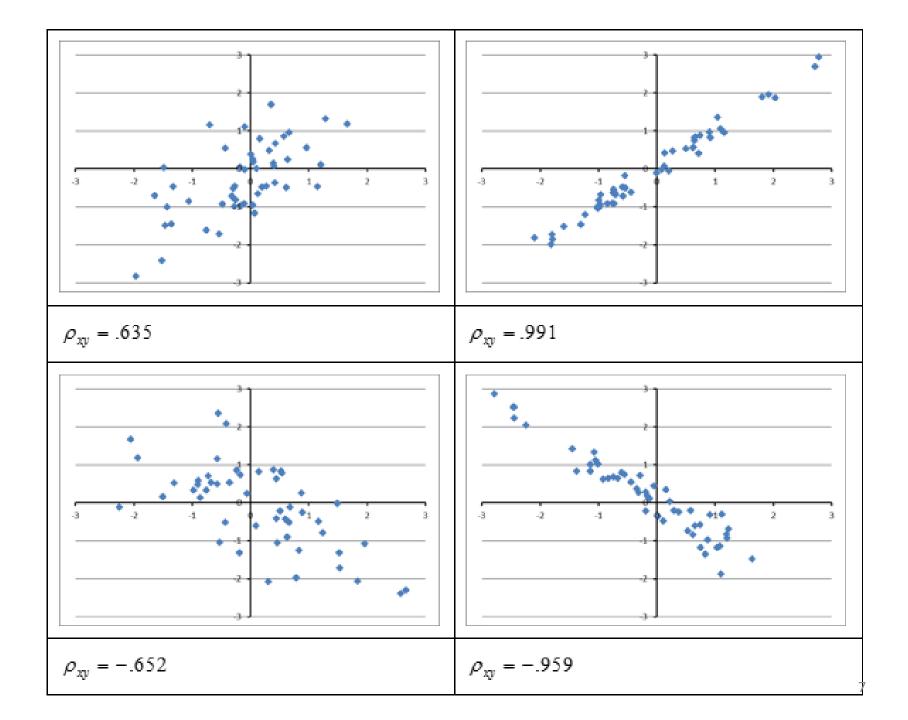
$$S_{xy} = \frac{1}{n-1} \sum (x_i - \overline{x})(y_i - \overline{y}) = \frac{1}{n-1} \sum x_i (y_i - \overline{y})$$
$$= \frac{1}{n-1} \sum (x_i - \overline{x})y_i$$

Sample Correlation

- The sample correlation: $\rho_{xy} = \frac{S_{xy}}{S_x S_y}$
 - The ratio of the sample covariance to the product of the sample standard deviations (some use r_{xy} for this sample statistic).
 - By construction, $|\rho_{xy}| \le 1$, $or -1 \le \rho_{xy} \le 1$ (this is the Cauchy–Schwarz inequality).
- If $S_{xy} = 0$, the sample covariance is 0 and the sample correlation is also 0 ... and if the sample covariance is negative (positive), then so is the sample correlation.
- If $|\rho_{xy}|$ is close to 1 then the relationship between x and y will look quite linear (with a positive slope if $\rho_{xy} \sim 1$, and a negative slope if $\rho_{xy} \sim -1$.

Correlation captures the extent to which x and y are moving together in a linear fashion.

Sample Correlation: Examples



Standardize/Normalize Data

• To *standardize*, or *normalize*, a variable:

 $z_i = \frac{x_i - x}{S_x}$

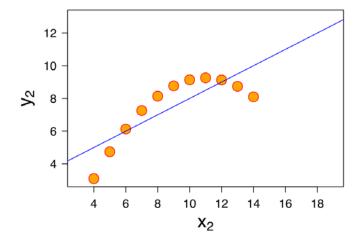
- first subtract the variable's mean from each observation,
- then divide each new value by the variable's standard deviation.
- *Means and variances*: The result is a transformed variable, z, with mean 0 and variance 1:
 - Sample Mean: $\overline{z} = 0$; Sample Variance (Std Dev): $S_{zz} = S_z = 1$
- Covariances and correlations: * indicates standardized, so: $x_i^* = \frac{x_i \overline{x}}{S_x}$ and $y_i^* = \frac{y_i \overline{y}}{S_y}$.
 - Sample Covariance: $S_{x^*y^*} = \rho_{xy}$; Sample Correlations: $\rho_{x^*y^*} = S_{x^*y^*} = \frac{S_{xy}}{S_x S_y} = \rho_{xy}$.

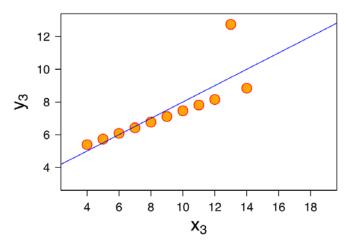
Standardization will typically affect sample means, variances and covariances of variables... but it does not impact sample correlations.

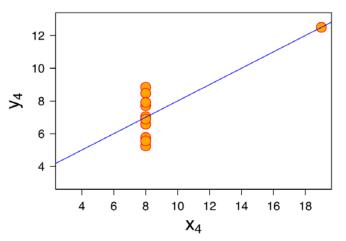
Anscombe's Quartet: Sample stats tell you a lot... but...

Property	Value	Accuracy
Mean of x	9	exact
Sample variance of x : σ^2	11	exact
Mean of y	7.50	to 2 decimal places
Sample variance of y : σ^2	4.125	±0.003
Correlation between x and y	0.816	to 3 decimal places



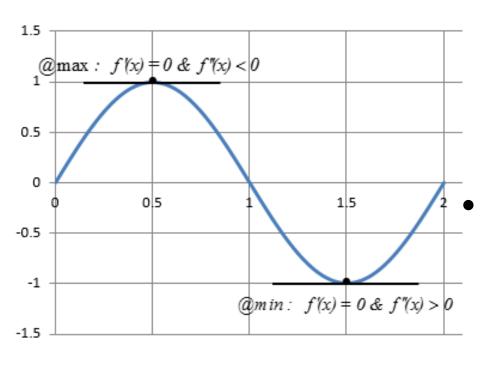






Optimization: FOCs and SOCs

$OLS \equiv min SSRs$



- Ordinary Least Squares (OLS): min SSRs to estimate unknown parameter values.
 - Which coefficients minimize the sum of the squared differences between predicted and actual values?
 - We call these differences between predicted and actual values *residuals*... and the sum of the squared residuals *SSR*s, for, well, *Sum of Squared Residuals*.

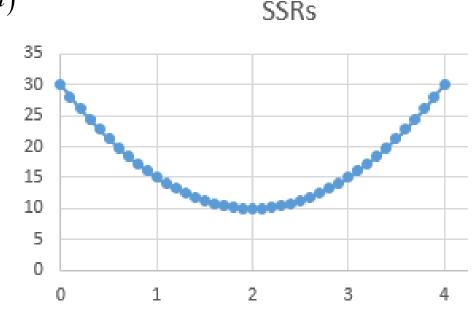
To solve optimization problems (assume differentiability):

- First Order Conditions (FOCs): Identify solution candidates
- Second Order Conditions (SOCs): Which candidates minimize SSRs?

An Example: Min SSRs (to estimate unknown mean)

- Your sample data:: $\{y_i\}$ i = 1, 2, ... n.
- Estimate the mean μ : find the number m* that is *closest* to the observed sample
- m* minimizes Sum Squared Residuals (SSR): $SSR = \sum (y_i m)^2$
- FOC: $\frac{dSSR}{dm} = \sum 2(y_i m)(-1) = 0$; $\sum y_i = \sum m^* = nm^*$; $m^* = \frac{1}{n} \sum y_i = \overline{y}$.
- SOC: $\frac{d^2SSR}{dm^2} = \sum 2(-1)(-1) = 2n > 0$

So we have a minimum @ $m^* = \overline{y}$.



Onwards... to SLR Analytics